The quantitative nature of reduced Floer theory

نویسندگان

چکیده

We study the reduced symplectic cohomology of disk subbundles in negative line bundles. show that this theory “sees” spectrum a quantum action on cohomology. Precisely, decomposes into generalized eigenspaces first Chern class by cup product. The bundle radius R sees all whose eigenvalues have size less than R, up to rescaling fixed constant. Similarly, we an annulus subbundle between radii R1 and R2 captures R2, rescaling. how local closed-string mirror symmetry statements follow from these computations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the analysis of the role of the speech acts theory in translating and dubbing hollywood films

از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...

15 صفحه اول

Monodromy in Hamiltonian Floer Theory

Schwarz showed that when a closed symplectic manifold (M,ω) is symplectically aspherical (i.e. the symplectic form and the first Chern class vanish on π2(M)) then the spectral invariants, which are initially defined on the universal cover of the Hamiltonian group, descend to the Hamiltonian group Ham(M,ω). In this note we describe less stringent conditions on the Chern class and quantum homolog...

متن کامل

Development in symplectic Floer theory

In the middle of the 1980s, Floer initiated a new theory, which is now called the Floer theory. Since then the theory has been developed in various ways. In this article we report some recent progress in Floer theory in symplectic geometry. For example, we give an outline of a proof of the flux conjecture, which states that the Hamiltonian diffeomorphism group is C1-closed in the group of sympl...

متن کامل

Gauged Floer Theory of Toric Moment Fibers

We investigate the small area limit of the gauged Lagrangian Floer cohomology of Frauenfelder [17]. The resulting cohomology theory, which we call quasimap Floer cohomology, is an obstruction to displaceability of Lagrangians in the symplectic quotient. We use the theory to reproduce the results of FukayaOh-Ohta-Ono [21], [19] and Cho-Oh [12] on non-displaceability of moment fibers of not-neces...

متن کامل

A tour of bordered Floer theory

Heegaard Floer theory is a kind of topological quantum field theory, assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented 4dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107682